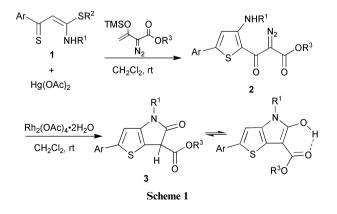
Rhodium(II)-mediated reactions of thiobenzoylketene *S*,*N*-acetals with α-diazo carbonyl compounds: synthesis of 2-substituted 3-alkylamino-5-phenylthiophenes †

## Hyun Min Song and Kyongtae Kim\*

School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, Korea. E-mail: kkim@plaza.snu.ac.kr; Fax: 82 2874 8858; Tel: 82 2886 6636


Received (in Cambridge, UK) 24th April 2002, Accepted 16th August 2002 First published as an Advance Article on the web 14th October 2002

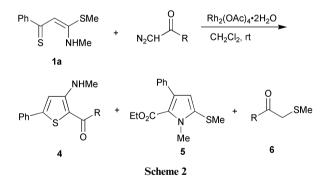
Treatment of 3-methylamino-3-methylsulfanyl-1-phenylpropenethione **1** with excess (2.5 equiv.)  $\alpha$ -diazo carbonyl compounds such as  $\alpha$ -diazoketones and  $\alpha$ -diazoesters in the presence of a catalytic amount of Rh(II) acetate in CH<sub>2</sub>Cl<sub>2</sub> at rt gave 2-acyl- or 2-aroyl-3-methylamino-5-phenylthiophenes and alkyl 3-methylamino-5-phenylthiophene-2-carboxylates, respectively, as major products along with 1-phenyl-2-methylsulfanylethanones. The formation of the major products indicates that the carbenes or carbenoids generated interact initially with the thione sulfur of **1**.

# Introduction

The reaction of keto carbenoids with thiocarbonyl compounds is rapidly gaining prominence as an efficient method for synthesizing sulfur-containing compounds, especially threeand five-membered heterocycles. A survey of the literature shows that diverse classes of thiocarbonyl compounds such as thioketones,<sup>1</sup> thioketenes,<sup>2</sup> alkyl and aryl isothiocyanates,<sup>3</sup> *O*-alkyl thioesters,<sup>4</sup> dithioesters,<sup>5</sup> thioamides,<sup>6</sup> thioureas,<sup>7</sup> and 1,3-thiazole-5(4*H*)-thiones,<sup>8</sup> have been employed in the absence or presence of a catalyst for synthetic and mechanistic studies.

It has been shown that the reactions of carbenes or carbenoids generated from  $\alpha$ -diazo carbonyl compounds with the C=S bonds of thiocarbonyl compounds initially proceeds with the formation of thiocarbonyl ylides, which subsequently undergo 1,3-dipolar cycloaddition or electrocyclic ring closure to give thiiranes followed by extrusion of sulfur leading to  $\alpha$ , $\beta$ -unsaturated carbonyl compounds. Nevertheless, it may be difficult to predict the chemo- and regioselectivities from the same reactions of thiocarbonyl compounds with multifunctionalities. Very recently, we reported the synthesis of 5,6dihydro-4*H*-thieno[3,2-*b*]pyrrolid-5-ones **3** by treatment of alkyl 3-(thien-2-yl)-3-oxo-2-diazopropanoates **2**, prepared from thioaroylketene *S*,*N*-acetals **1**, Hg(OAc)<sub>2</sub>, and 2-diazo-3-trimethylsilyloxybut-3-enoic acid alkyl esters,<sup>9</sup> with Rh<sub>2</sub>(OAc)<sub>4</sub>· 2H<sub>2</sub>O<sup>10</sup> (Scheme 1). The result spurred us towards an examin-




† Electronic supplementary information (ESI) available: spectral and analytical data. See http://www.rsc.org/suppdata/p1/b2/b203931a/

2414 J. Chem. Soc., Perkin Trans. 1, 2002, 2414–2417

ation of the reactivity of the C=S bond of 1 toward carbenes because compound 1 has two other heteroatoms, *i.e.*, a sulfur atom of the R<sup>2</sup>S group and a nitrogen atom of the R<sup>1</sup>NH group, which might act as electron donors to the electrondeficient carbenes.<sup>11</sup> Therefore, we have studied the reactions of 1 with  $\alpha$ -diazo carbonyl compounds. The results are described herein.

# **Results and discussion**

Treatment of a mixture of **1a** (Ar = Ph,  $R^1 = R^2 = Me$ ) and a catalytic amount of  $Rh_2(OAc)_4 \cdot 2H_2O$  (8 mg) in  $CH_2Cl_2$  with ethyl diazoacetate (R = OEt, 1.5 equiv.) in  $CH_2Cl_2$  for 72 h at rt gave 3-methylamino-5-phenyl-2-thiophenecarboxylate (**4a**, R = OEt) and 1-methylpyrrole derivative **5** in 53% and 16% yields, respectively (Scheme 2). Similar reactions with other



 $\alpha$ -diazoesters and  $\alpha$ -diazoketones under the same conditions gave the corresponding 2-thiophenecarboxylates **4b,c** and acyl-**4d,e** and aroylthiophene derivatives **4f,j** in moderate yields. Interestingly, the reactions with the foregoing  $\alpha$ -diazo carbonyl compounds we tried (entries 2–10) did not give pyrrole derivatives analogous to **5** other than for ethyl diazoacetate. Instead, 1-phenyl-2-methylsulfanylethanone **6f** and 1-(4-tolyl)-2-methylsulfanylethanone **6g** were isolated in the reactions with benzoyland 4-methylbenzoyldiazomethanes, respectively. Reaction time and yields of compounds **4**, **5**, and **6** are summarized in Table 1.

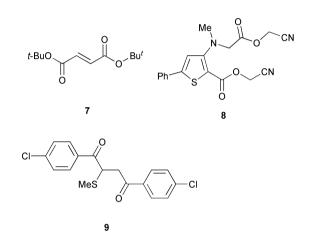
When excess (2.5 equiv.) diazo compounds were used under the same conditions, yields of 4 increased significantly except for that of 4h (entry 8). Nevertheless unreacted 1a albeit in

DOI: 10.1039/b203931a

PERKIN

Table 1 Reactions of 1 with  $\alpha$ -diazo carbonyl compounds in the presence of Rh<sub>2</sub>(OAc)<sub>4</sub>·2H<sub>2</sub>O

|  | Entry | RN₂CHCOR                                  | Time <sup><i>a</i></sup> ( <i>t</i> /h) |    |   | Yield <sup>b</sup> (%) |         |         |         |
|--|-------|-------------------------------------------|-----------------------------------------|----|---|------------------------|---------|---------|---------|
|  |       |                                           | Ā                                       | В  |   | 4                      | 5       | 6       | 1       |
|  | 1     | EtO                                       | 72                                      | 72 | a | 53 (61)                | 16 (21) |         |         |
|  | 2     | t-BuO                                     | 72                                      | 72 | b | $58^{\circ}(64)^{d}$   | ( )     |         |         |
|  | 3     | NCCH <sub>2</sub> O                       | 72                                      | 72 | с | $55(74)^{e}$           |         |         |         |
|  | 4     | Cl <sub>2</sub> CH                        | 72                                      | 20 | d | 54 (69)                |         |         |         |
|  | 5     | CICH <sub>2</sub> CH <sub>2</sub>         | 72                                      | 25 | e | 48 (74)                |         |         |         |
|  | 6     | Ph                                        | 72                                      | 35 | f | 63 (85)                |         | 16 (87) | 12(7)   |
|  | 7     | <i>p</i> -MeC <sub>6</sub> H <sub>4</sub> | 72                                      | 45 | g | 64 (86)                |         | 15 (90) | 17 (17) |
|  | 8     | p-MeOC <sub>6</sub> H <sub>4</sub>        | 72                                      | 40 | ĥ | 67 (67)                |         | (0)     | 19 (10) |
|  | 9     | m-BrC <sub>6</sub> H <sub>4</sub>         | 72                                      | 43 | i | 64 (76)                |         | (80)    | 14 (14) |
|  | 10    | p-ClC <sub>6</sub> H <sub>4</sub>         | 72                                      | 41 | i | 61 (79) <sup>f</sup>   |         | (56)    | 19 (10) |


<sup>*a*</sup> Reaction times A and B represent stirred time when 1.5 and 2.5 equivalents of diazo compounds were employed, respectively. <sup>*b*</sup> Isolated yields. Numbers in parentheses represent yields when 2.5 equiv. of diazo compounds were used. <sup>*c*</sup> In addition, *t*-butyl fumarate **7** was isolated in 9% and 12% yields, respectively. <sup>*d*</sup> In addition, *t*-butyl fumarate **7** was isolated in 9% and 12% yields, respectively. <sup>*c*</sup> In addition, compound **8** (16%) was isolated. <sup>*f*</sup> In addition, 1,4-bis(4-chlorophenyl)-2-methylsulfanylbutane-1,4-dione **9** was isolated in 7% yield.

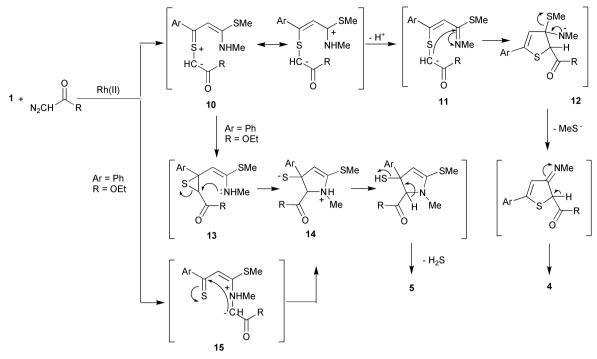
lower percentage (7-17%) compared with those involving 1.5 equiv. of diazo carbonyl compounds (12-19%), was recovered. Compounds 4 are all new except for 4a,<sup>96,12</sup> and 4f.<sup>9a,12</sup> Synthesis of alkyl 3-amino-5-phenylthiophene-2carboxylates has been mainly achieved by treatment of either β-chlorocinnamonitriles with thioglycolic acid esters in the presence of a base or a base-catalyzed cyclization of  $\beta$ -alkylsulfanyl- $\alpha$ -cyanocinnamonitriles.<sup>14</sup> However, synthesis of 2-acyl- and 2-aroyl-3-aminothiophenes has received little attention. Recently, compound 4a was prepared in high yield by treating a mixture of 1a and Hg(OAc)<sub>2</sub> in CH<sub>2</sub>Cl<sub>2</sub> at rt with active methylene compounds such as diethyl 1,3acetonedicarboxylate (83%),<sup>9b</sup> ethyl 3-nitrobenzoylacetate (89%),<sup>9b</sup> ethyl methylsulfonylacetate (74%),<sup>9b</sup> methylphenylsulfinylacetate (89%),<sup>9b</sup> and triethylphosphonoacetate (82%).<sup>9b</sup> Similarly 4f was prepared using pentane-2,4-dione (91%),9a 1-phenylbutane-1,3-dione (90%)<sup>9a</sup> or 1-phenyl-4,4,4-triflurobutane-1,3-dione  $(47\%)^{9a}$  by the same methodology. The reported method involving Hg(OAc)<sub>2</sub> appears to be superior to the present method involving  $\alpha$ -diazo carbonyl compounds from various standpoints such as yield, reaction time, and reaction temperature, providing the corresponding active methylene compounds are readily available.

Interestingly, the methanethiol liberated from **1** in the course of the reaction was trapped only by aroylcarbenes (entries 6–10) to give 1-aryl-2-methylsulfanylethanones **6** whose yields increased significantly in the presence of excess (2.5 equiv.) diazo compounds as expected.<sup>15,16</sup> However, no compounds analogous to **6** were isolated from the reactions with *a*-diazoesters and *a*-diazoketones. From the reactions with *tert*butyl diazoacetate (entry 2) was isolated di-*tert*-butyl fumarate 7, presumably formed by the reaction of *tert*-butoxycarbonylcarbene with its carbene precursor. The stereochemistry of 7 was assigned to be *trans* based on the chemical shift of the olefinic protons (6.66 ppm), which is in accord with the reported values (6.65 ppm).<sup>17</sup> The reaction with excess cyanomethyl diazoacetate (entry 3) afforded compound **8** 

(16%) as a minor product, which was envisaged to be formed through the insertion reaction of excess carbene, generated from cyanomethyl diazoacetate into the methylamino group of **4c**.<sup>15</sup> The reaction with excess  $\alpha$ -diazo-*p*-chloroacetophenone (entry 10) gave 1,4-bis(4-chlorophenyl)-2-methylsulfanyl-butane-1,4-dione **9** in 7% yield. Compound **9** may be formed by dimerization of *p*-chlorobenzoylcarbene to give 1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione, followed by addition of methanethiol.

The mechanism for the formation of **4** may be rationalized by an intramolecular nucleophilic attack of the carbanion **11**, produced by deprotonation from the resonance form of a thiocarbonyl ylide **10**, to the imino carbon to give dihydrothiophene




12 (Scheme 3). Loss of a methanethiolate ion, followed by aromatization would give 4. On the other hand, either 1,3-dipolar cycloaddition of 10 or addition reaction of carbene into the C=S bond of 1 would give thiirane derivative 13, whose C–S bond is cleaved by an intramolecular nucleophilic attack of the amino group to give a pyrroline intermediate 14. A proton-transfer, followed by loss of a H<sub>2</sub>S molecule would give 5. Alternatively, one may envisage the formation of the intermediate 14 *via* an intramolecular cyclization of a nitrogen ylide 15. However, the involvement of the intermediate 13 rather than 15 may be more plausible since no insertion product 16 was isolated.<sup>11d</sup>



In summary, the reactions of thiobenzoylketene *S*,*N*-acetals **1** having C=S, alkylamino, and alkylsulfanyl functionalities with  $\alpha$ -diazo carbonyl compounds in the presence of a Rh(II) catalyst gave thiophene derivatives as major products, which indicates that the carbene or carbenoid generated interacts preferentially with the thione sulfur of **1**.

### Experimental

The <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded at 300 MHz in  $CDCl_3$  solution containing tetramethylsilane as an internal standard; *J*-values are given in Hz. IR spectra were recorded in KBr or for thin-film samples on KBr plates. Mass spectra were obtained by electron impact at 70 eV. Elemental analyses were determined by the National Center for Inter-University Research Facilities, Seoul National University. Column



Scheme 3

chromatography was performed using silica gel (Merck, 70–230 mesh, ASTM). Mps were determined on a Fisher-Johns melting point apparatus and are uncorrected. 3-Methylamino-3-methyl-sulfanyl-1-phenylpropenethione **1a** was prepared according to the literature procedures.<sup>96</sup> Ethyl,<sup>18</sup> *tert*-butyl,<sup>19</sup> and cyanomethyl diazoacetates<sup>20</sup> were prepared according to the literature procedures.  $\alpha$ -Diazoacetophenone, and other  $\alpha$ -diazoketones were prepared from the corresponding aroyl chloride and diazomethane.<sup>21</sup>

#### Reaction of 1a with ethyl diazoacetate

(i) To a solution of 1a (75 mg, 0.336 mmol) in CH<sub>2</sub>Cl<sub>2</sub> was added 1 mol% of Rh<sub>2</sub>(OAc)<sub>4</sub>·2H<sub>2</sub>O (8 mg). The mixture was stirred for 5 min at rt, followed by dropwise addition of a solution of ethyl diazoacetate (57 mg, 0.504 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (6 ml). The mixture was stirred for 72 h at rt. Removal of the solvent in vacuo gave a deep reddish, and sticky residue, which was chromatographed on a silica gel  $(1.2 \times 18 \text{ cm})$  using a mixture of n-hexane and EtOAc (4:1) to give ethyl 1-methyl-5methylsulfanyl-3-phenylpyrrole-2-carboxylate 5 (15 mg, 16%): yellow liquid (Found: C, 65.3; H, 6.1; N, 5.2; S, 11.7. C<sub>14</sub>H<sub>17</sub>NO<sub>2</sub>S requires C, 65.4; H, 6.2; N, 5.1; S, 11.6%); v<sub>max</sub> (neat)/cm  $^{-1}$  2960, 1689, 1408, 1260, 1180, 1097 and 732;  $\delta_{\rm H}$  1.04 (3H, t, J7.1, CH<sub>3</sub>), 2.39 (3H, s, SCH<sub>3</sub>), 3.97 (3H, s, NCH<sub>3</sub>), 4.11 (2H, q, J 7.1, CH<sub>2</sub>), 6.28 (1H, s, =CH), 7.28 (2H, m, ArH) and 7.33 (3H, m, ArH); m/z (EI) 275 (M<sup>+</sup>, 100%), 260 (37), 232 (41), 203 (28), 147 (19) and 102 (11). Subsequent elution with the same solvent mixture (4 : 1) gave ethyl 3-methylamino-5phenylthiophene-2-carboxylate 4a (46 mg, 53%), mp 56-57 °C (from CH<sub>2</sub>Cl<sub>2</sub>-MeOH) (lit.<sup>9b,12</sup> 55-57 °C) (Found: C, 64.3; H, 5.7; N, 5.3; S, 12.2. C<sub>14</sub>H<sub>15</sub>NO<sub>2</sub>S requires C, 64.3; H, 5.8; N, 5.4; S, 12.3%); v<sub>max</sub> (neat)/cm<sup>-1</sup> 3392, 1654, 1574, 1260, 1091 and 761; δ<sub>H</sub> 1.29 (3H, t, J 7.1, CH<sub>3</sub>), 2.96 (3H, d, J 5.2, NCH<sub>3</sub>), 4.23 (2H, q, J 7.1, CH<sub>2</sub>), 6.61 (1H, s, NH), 6.79 (1H, s, =CH), 7.35 (3H, m, ArH) and 7.57 (2H, m, ArH); *m*/*z* (EI) 261 (M<sup>+</sup>, 100%), 215 (35), 187 (38), 160 (10) and 115 (14). (ii) From the reaction of 1a (70 mg, 0.313 mmol), Rh<sub>2</sub>(OAc)<sub>4</sub>·2H<sub>2</sub>O and ethyl diazoacetate (89 mg, 0.783 mmol) were isolated 5 (18 mg, 21%) and 4a (51 mg, 61%).

#### Reaction of 1a with a-diazo-m-bromoacetophenone

(i) From the reaction of 1a (65 mg, 0.291 mmol), Rh<sub>2</sub>(OAc)<sub>4</sub>.

2416 J. Chem. Soc., Perkin Trans. 1, 2002, 2414–2417

 $2H_2O$  and  $\alpha$ -diazo-*m*-bromoacetophenone (98 mg, 0.437 mmol) was isolated a reaction mixture, which was chromatographed to give unreacted 1a (9 mg, 14%) and 2-(m-bromobenzoyl)-3methylamino-5-phenylthiophene 4i (69 mg, 64%), mp 111-112 °C (from CH<sub>2</sub>Cl<sub>2</sub>-*n*-hexane) (Found: C, 58.0; H, 3.7; N, 3.8; S, 8.6. C<sub>18</sub>H<sub>14</sub>BrNOS requires C, 58.1; H, 3.8; N, 3.8; S, 8.6 %);  $v_{\text{max}}$  (neat)/cm<sup>-1</sup> 3328, 1699, 1584, 1539, 1459, 1414, 1363, 1222, 1158 and 1017; δ<sub>H</sub> 3.14 (3H, d, J 5.2, NCH<sub>3</sub>), 6.95 (1H, s, =CH), 7.37 (1H, d, J7.9, ArH), 7.42 (3H, m, ArH), 7.66 (3H, m, ArH), 7.76 (1H. d. J 7.9, ArH), 7.95 (1H. t. J 7.5, ArH) and 8.65 (1H. br d, J 4.4, NH); m/z (EI) 373 (100%), 372 (M<sup>+</sup>, 91), 356 (38), 275 (18), 216 (32), 188 (20), 155 (16) and 115 (21). (ii) From the reaction of 1a (80 mg, 0.385 mmol), Rh<sub>2</sub>(OAc)<sub>4</sub>·2H<sub>2</sub>O and α-diazo-m-bromoacetophenone (201 mg, 0.895 mmol) was isolated 1-(m-bromophenyl)-2-methylsulfanylethanone 6i (70 mg, 80%) by eluting the reaction mixture with a mixture *n*-hexane and EtOAc (8 : 1). Compound 6i was purified by HPLC ( $\mu$ Porasil, 10  $\mu$ m, 7.8 × 300 mm id) using acetonitrile, pale yellow liquid (Found: C, 44.0; H, 3.7; S, 13.2. C<sub>9</sub>H<sub>9</sub>BrOS requires C, 44.1; H, 3.7; S, 13.1%);  $v_{max}$  (neat)/cm<sup>-1</sup> 2928, 1670, 1558, 1414, 1554, 1100, 1122, 1607, 767, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1617, 1558, 1414, 1254, 1190, 1132, 1062, 761 and 675;  $\delta_{\rm H}$  2.15 (3H, s, SCH<sub>3</sub>), 3.74 (2H, s, CH<sub>2</sub>), 7.34 (1H, t, J7.9, ArH), 7.71 (1H, m, ArH), 7.92 (1H, m, ArH) and 8.13 (1H, m, NH); m/z (EI) 246  $(M^{+} + 2, 28\%), 244 (M^{+}, 21), 200 (16), 198 (16), 185 (100), 183$ (100), 157 (31), 155 (30), 76 (15) and 74 (14). (ii) Unreacted 1a (10 mg, 14%) and 4i (82 mg, 76%) were isolated from the reaction of 1a (65 mg, 0.291 mmol), Rh<sub>2</sub>(OAc)<sub>4</sub>·2H<sub>2</sub>O and a-diazo-m-bromoacetophenone (169 mg, 0.756 mmol) after 43 h.

#### Acknowledgements

We are grateful to the Korea Research Foundation for financial support (KRF-2001-OP0261).

### References

(a) G. Mloston and H. Heimgartner, *Helv. Chim. Acta*, 1996, **79**, 1785; (b) M. Kägi, A. Linden and H. Heimgartner, *Helv. Chim. Acta*, 1998, **81**, 285; (c) G. Mloston, T. Gendek, A. Linden and H. Heimgartner, *Helv. Chim. Acta*, 1998, **81**, 66; (d) H. Staudinger and J. Siegwart, *Helv. Chim. Acta*, 1920, **3**, 833; (e) H. Staudinger and J. Siegwart, *Helv. Chim. Acta*, 1920, **3**, 840; (f) M. Sander, *Chem. Rev.*, 1966, **66**, 297; (g) A. Schönberg and E. Freese, *Chem.*

*Ber.*, 1963, **96**, 2420; (*h*) I. K. Korobitsyna and O. P. Studzinskii, *Zh. Org. Khim.*, 1965, **5**, 1493; (*i*) W. J. Middleton, E. G. Howard and W. H. Sharkey, *J. Org. Chem.*, 1965, **30**, 1375; (*j*) A. Schönberg and E. Freese, *Chem. Ber.*, 1962, **95**, 2810; (*k*) N. Latif and I. Fathy, *J. Org. Chem.*, 1962, **27**, 1633.

- 2 (a) N. Tokitoh, T. Suzuki, A. Itami, M. Goto and W. Ando, *Tetrahedron Lett.*, 1989, **30**, 1249; (b) H. Nakano and T. Ibata, *Bull. Chem. Soc. Jpn.*, 1995, **68**, 1393; (c) N. Tokitoh, T. Suzuki and W. Ando, *Tetrahedron Lett.*, 1989, 4271.
- 3 (a) T. Ibata and H. Nakano, *Bull. Chem. Soc. Jpn.*, 1992, 65, 3088;
   (b) R. W. Hoffmann, K. Steinbach and B. Dittrich, *Chem. Ber.*, 1973, 106, 2174.
- 4 S. Takano, S. Tomita, M. Takahashi and K. Ogasawara, *Synthesis*, 1987, 1116.
- 5 S. Tamagaki and S. Oae, Tetrahedron Lett., 1972, 1159.
- 6 (a) F. G. Fang, M. Prato, G. Kim and S. J. Danishefsky, *Tetrahedron Lett.*, 1989, 30, 3625; (b) F. G. Fang and S. J. Danishefsky, *Tetrahedron Lett.*, 1989, 30, 2747; (c) F. G. Fang, M. E. Maier and S. J. Danishefsky, *J. Org. Chem.*, 1990, 55, 831; (d) G. Kim, M. Y. Chu-Moyer and S. J. Danishefsky, *J. Am. Chem. Soc.*, 1990, 112, 2003; (e) A. Padwa, F. R. Kinder and L. Zhi, *Synlett*, 1991, 287; (f) K. T. Potts and P. Murphy, *J. Chem. Soc., Chem. Commun.*, 1984, 1348; (g) A. Padwa, F. R. Kinder, W. R. Nadler and L. Zhi, *Heterocycles*, 1993, 35, 367.
- 7 (a) G. F. Koser and S. M. Yu, J. Org. Chem., 1976, 41, 125; (b)
  P. Gronski and K. Hartke, *Tetrahedron Lett.*, 1976, 4139; (c)
  L. Hadjiarapoglou, S. Spyroudis and A. Varvoglis, J. Am. Chem. Soc., 1985, 107, 7178; (d)
  L. Hadjiarapoglou and A. Varvoglis, J. Chem. Soc., Perkin Trans. 1, 1989, 379; (e)
  Y. Hayashi, T. Okada and M. Kawanishi, Bull. Chem. Soc. Jpn., 1970, 43, 2506; (f)
  J. N. C. Hood, D. Lloyd, W. A. MacDonald and T. M. Shepherd, Tetrahedron, 1982, 238, 3355.
- 8 (a) G. Mloston, A. Linden and H. Heimgartner, Helv. Chim. Acta, 1991, 74, 1386; (b) G. Mloston and H. Heimgartner, Helv. Chim.

- Acta, 1992, 75, 1825; (c) G. Mloston, M. Petit, A. Linden and H. Heimgartner, Helv. Chim. Acta, 1994, 77, 435; (d) M. Kägi, A. Linden and H. Heimgartner, Helv. Chim. Acta, 1993, 76, 1715; (e) M. Petit, A. Linden, G. Mloston and H. Heimgartner, Helv. Chim. Acta, 1994, 77, 1076; (f) M. Kägi, G. Mloston, A. Linden and H. Heimgartner, Helv. Chim. Acta, 1994, 77, 1299; (g) M. Kägi, A. Linden, G. Mloston and H. Heimgartner, Helv. Chim. Acta, 1994, 77, 1296; (g) M. Kägi, 79, 855.
- 9 (a) B. S. Kim, K. S. Choi and K. Kim, J. Org. Chem., 1998, 63, 6086;
   (b) B. S. Kim and K. Kim, J. Org. Chem., 2000, 65, 3690.
- 10 D. J. Lee, K. Kim and Y. J. Park, Org. Lett., 2002, 4, 873.
- 11 (a) W. Kimse, Carbene Chemistry, Academic Press, New York, 2nd edn,1971; (b) M. Jones and R. A. Moss, Carbenes, John Wiley and Sons, New York, 1973, vol. 1; (c) A. Padwa and S. F. Hornbuckle, Chem. Rev., 1991, 91, 263; (d) A. Padwa and M. D. Weingarten, Chem. Rev., 1996, 96, 223.
- 12 M. P. Doyle, W. H. Tamblyn and V. Baghari, J. Org. Chem., 1981, 46, 5094.
- 13 H. Hartmann and J. Liebscher, Synthesis, 1984, 275.
- 14 K. Gewald and U. Hain, Monatsh. Chem., 1992, 23, 455.
- 15 T. Ye and M. A. McKervey, *Chem. Rev.*, 1994, **94**, 1091 and references are cited therein.
- 16 M. A. Mckervey and P. Ratananukul, *Tetrahedron Lett.*, 1982, 23, 2509.
- 17 N. Subsinghe, M. Schulte, M. Y.-M. Chan, R. J. Roon, J. F. Koerner and R. L. Johnson, *J. Med. Chem.*, 1990, **33**, 2734.
- 18 E. B. Womack and A. B. Nelson, Org. Synth., Coll. Vol. III, 1955, 392.
- 19 M. Regitz, J. Hocker and A. Liedhegener, Org. Synth., Coll. Vol. V, 1973, 179.
- 20 E. A. Shapiro, A. B. Dyatkin and O. M. Netedov, *Izv. Akad. Nauk*, *Ser. Khim.*, 1992, **41**, 272.
- 21 (a) J. N. Bridson and J. Hooz, Org. Synth., Coll. Vol. VI, 1988, 386; (b) M. S. Newman and P. Beal III, J. Am. Chem. Soc., 1947, 71, 1506.